Backgrounds	Learnable Transformations by Shape	Moment-Matching	Copula Transform	Results	Acknowledgements

The Effect of Pre-ReLU Input Distribution on DNN

Some formulations of Batch-Normalization

Shaojie Bai¹ Advisor: J. Zico Kolter¹

¹Carnegie Mellon University School of Computer Science

10 May 2017

Backgrounds 000	Learnable Transformations by Shape	Moment-Matching	Copula Transform	Results 000000	Future	Acknowledgements
_						

Table of Contents

1 Backgrounds

- Very brief intro to DNN
- How fast does a DNN learn?
- Batch-normalization

2 Learnable Transformations by Shape

- 3 Moment-Matching
- 4 Copula Transform
- 5 Results
- 6 Future

7 Acknowledgements

Backgrounds	Learnable Transformations by Shape	Moment-Matching	Copula Transform	Results	Acknowledgements
000					
Very brief intro to	DNN				
Backgro	ounds				

Recent years have witnessed great success in the usage of deep neural network (DNN) in various tasks.

VGG, AlexNet, AlphaGo, etc.

So what is a DNN? The idea is straightforward.

- Layers
- 2 Links
- Non-linearities

FIGURE - A simple 2-layer network

In this example :

$$y_{\text{predict}} = \mathbf{W}_2(\varphi(\mathbf{W}_1(\mathbf{x}^{(i)}) + \mathbf{b}_1)) + \mathbf{b}_2$$

Backgrounds	Learnable Transformations by Shape	Moment-Matching	Copula Transform	Results	Acknowledgements
000					
How fast does a l	DNN learn?				

Backgrounds

A neural network is able to update its parameters to make itself better, as long as there is a metric for what's good/bad— a loss function ℓ :

$$\mathbf{W}^{+} \leftarrow \mathbf{W} - \alpha \cdot \nabla_{\mathbf{W}} \ell(\mathbf{x}^{(i)}, \mathbf{W}, \mathbf{b}, \dots)$$
 (GD)

Backpropagation

GD, Adam, Adagrad, RMSProp, etc.

Activation functions (nonlinearities)

ReLU (Rectified Linear Unit), Sigmoids, etc.

Input distribution

Batch-normalization

FIGURE - Example of a GD trace

Backgrounds	Learnable Transformations by Shape	Moment-Matching	Copula Transform	Results	Acknowledgements
000					
Batch-normalizati	on				
Backgro	ounds				

In late 2015, Szegedy and loffe proposed the method of adding a **batch-normalization** (BN) layer use before ReLU to accelerate training and testing convergences.

Idea : normalize the input minibatch's data so that it has zero mean and unit variance :

$$\hat{x}^{(i)} = \gamma^{(i)} \frac{x^{(i)} - \mu^{(i)}}{\sqrt{\sigma^{(i)^2} + \epsilon}} + \beta^{(i)}$$

where $\mu^{(i)}$ is the mean of this minibatch and $\sigma^{(i)}$ is the standard deviation.

Backgrounds	Learnable Transformations by Shape	Moment-Matching	Copula Transform	Results	Acknowledgements
	• •				

Learnable Transformations

Compare the distribution pattern for pre-BN data vs. post-BN (pre-ReLU) data :

FIGURE - Pre-ReLU distribution in a network using BN (setting 1) on MNIST. Left : pre-BN. Right : post-BN.

FIGURE - Pre-ReLU distribution in a network using BN (setting 2) on MNIST. Left : pre-BN. Right : post-BN.

Backgrounds	Learnable Transformations by Shape	Moment-Matching	Copula Transform	Results 000000	Acknowledgements

Learnable Transformations

In general, we observed that surprisingly, BN+ReLU tends to transform the data into a bimodal shape. In particular, a higher, narrower peak at the near-zero negative side, as well as a shorter, wider peak at the farther positive side.

Idea : if this is the shape DNN prefers... we can try to simulate it !

- Steeper slope at around 0
- Gradually flattened slope as we move farther from the origin
- At least twice differentiable

Example :

FIGURE - Learnable transformation example : square-root-shift functions; a and b are learnables

Backgrounds	Learnable Transformations by Shape	Moment-Matching	Copula Transform	Results 000000	Acknowledgements
Momen	t-Matching				

A more careful and statistical formulation of **Batch-Normalization**.

- Think of BN as an attempt to match the empirical data distribution so that its 1st moment¹ becomes 0 and 2nd moment becomes 1.
- Target : *N*(0, 1) (which has moments 0,1,0,3,0,15,...)
- What if we match the moments to degrees higher than 2? For instance, k = 6?

Challenge : Matching 2 moments is very easy (affine transformation). Generally no reliable one-step method for higher-degree moment match.

^{1.} In general, the *i*th statistical moment is defined as $\mathbb{E}[X^i] = \int x^i p(x) dx$

Backgrounds	Learnable Transformations by Shape	Moment-Matching	Copula Transform	Results 000000	Acknowledgements

Moment-Matching

Generally, given input data x the goal of this method is two-fold :

1. Find optimal distribution for certain moments

Find distributions $p_1(x)$ and $p_2(x)$ that satisfy the empirical and target moments, respectively :

$$\mathbb{E}_*[x^i] = \int x^i p_*(x) \, dx = \begin{cases} \hat{\mu}_i = \frac{1}{n} \sum_{j=1}^n \mathbf{x}_j^i & \text{empirical} \\ \mu_i & \text{target} \end{cases} \quad \text{for } i = 1, \dots, k$$

2. Transform the data

Match the quantiles of the two distributions, and transform the input x by :

$$\hat{\mathbf{x}}_j = F_2^{-1}(\qquad \underbrace{F_1(\mathbf{x}_j)}) \iff F_2(\hat{\mathbf{x}}_j) = F_1(\mathbf{x}_j)$$

the quantile of \mathbf{x}_i in F_1

where F_1 and F_2 are the cumulative distribution functions (cdf) of p_1 and p_2 .

Backgrounds	Learnable Transformations by Shape	Moment-Matching	Copula Transform	Results 000000	Acknowledgements

Moment-Matching

Using maximum Shannon entropy H(p) as the metric for the optimal p_1 and p_2 , we can re-formulate the problem by considering its dual problem, which must be convex :

$$\max_{p} H(p) = -\int p(x) \log p(x) dx \quad \underline{\text{s.t.}} \quad \mathbb{E}_{*}[x^{i}] = \mu_{i}, i \in [k]$$
$$\iff \min_{\gamma} \mathcal{L}(\gamma) = \int_{S} \underbrace{\exp\left(\sum_{i=0}^{k} \gamma_{i} T_{i}(x) - 1\right)}_{\text{Optimal } p_{*} \text{ from KKT}} dx - \sum_{i=0}^{k} \gamma_{i} T_{i}(x) \quad (\lambda \text{ are dual variables})$$

This allows us to use Newton's method with backtracking line search :

$$\gamma^+ = \gamma - t (\nabla_{\gamma}^2 \mathcal{L})^{-1} \nabla_{\gamma} \mathcal{L}$$
 (*t* from line search)

As for the second phase, $F_2(\hat{\mathbf{x}}_i) = F_1(\mathbf{x}_i)$ can also be solved using Newton's method.

However, the detailed steps is much more complicated :

- Inefficient integration
- Sensitivity of γ_i corresponding on higher degrees compromises stability of convergence
- Hard to backpropagate

Backgrounds 000	Learnable Transformations by Shape	Moment-Matching	Copula Transform	Results 000000	Future	Acknowledgements
Copula	Transform					

We can impose an even stronger requirement on the target of the transformation.

- Learnable transformations : observation-based
- Moment-matching : match to some target moments up to a finite degree k
- **Copula transform** : a "perfect" transform to match a specific distribution

Definition (informally): For a random vector (X_1, \ldots, X_d) where each X_i has a continuous probability distribution function, the random vector of its cdfs :

$$(U_1,\ldots,U_d)=(F_1(X_1),\ldots,F_d(X_d))$$

has uniformly distributed marginals. The joint cdf of (U_1, \ldots, U_d) is the copula of (X_1, \ldots, X_d) .

A bit too abstract?

Backgrounds	Learnable Transformations by Shape	Moment-Matching	Copula Transform	Results 000000	Future	Acknowledgements
Copula	Transform					

Basic ideas/steps for copula transform :

Copula transform

SortIndex(x) : For each x_i in the input, find its index in the sorted version of x. Name this index t_i.

In short, for a target distribution with cdf Φ :

$$\hat{\mathbf{x}} = \Phi^{-1} \left[\frac{\text{SortIndex}(\mathbf{x}) + 0.5}{n = \text{len}(\mathbf{x})} \right]$$

(Add 0.5 to balance indexing bias)

FIGURE - An example of a copula transform on a length-5 input data x

Backgrounds	Learnable Transformations by Shape	Moment-Matching	Copula Transform	Results 000000	Future	Acknowledgements

Copula Transform

However, sorting is not differentiable. This makes backpropagation impossible. Instead, we can approximate the sort.

Q : What does it mean when we say \mathbf{x}_i is at index 2 in the sorted version of \mathbf{x} ?

Note that

$$\mathbf{x}\mathbf{1}^{T} - \mathbf{1}\mathbf{x}^{T} = \begin{bmatrix} x_{1} & x_{1} & \dots & x_{1} \\ x_{2} & x_{2} & \dots & x_{2} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n} & x_{n} & \dots & x_{n} \end{bmatrix} - \begin{bmatrix} x_{1} & x_{2} & \dots & x_{n} \\ x_{1} & x_{2} & \dots & x_{n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{1} & x_{2} & \dots & x_{n} \end{bmatrix} = [x_{i} - x_{j}]_{i,j}$$

Therefore, the # of positive values in row *i* is exactly the index of \mathbf{x}_i :

SortIndex(x) =
$$1_{\{y>0\}}(\mathbf{x}\mathbf{1}^T - \mathbf{1}\mathbf{x}^T) \cdot \mathbf{1}^{n \times 1}$$

 $\approx \left[\sigma(\gamma(\mathbf{x}\mathbf{1}^T - \mathbf{1}\mathbf{x}^T)) - \frac{1}{2}I\right] \cdot \mathbf{1}^{n \times 1}$

where $\sigma(x) = \frac{1}{1 + \exp(-x)}$ is the sigmoid function and γ is a strength factor for the approximation.

Shaojie Bai

Backgrounds	Learnable Transformations by Shape	Moment-Matching	Copula Transform	Results 000000	Acknowledgements
<u> </u>					

Copula Transform

The approximation is good in most of the cases, assuming we have a reasonable value for $\gamma-$ which is learnable through backpropagation.

FIGURE – Sigmoid approximation of the indicator function with different strengths

Copula transform formula with the learnables θ, β, γ

$$\hat{\mathbf{y}} = \theta \hat{\mathbf{x}} + \beta = \theta \Phi^{-1} \left[\frac{\sigma(\gamma(\mathbf{x} \mathbf{1}^T - \mathbf{1} \mathbf{x}^T)) \cdot \mathbf{1}^{n \times 1}}{n = \operatorname{len}(\mathbf{x})} \right] + \beta$$

Backgrounds	Learnable Transformations by 00	y Shape Moment-Matching	Copula Transform	Results ●○○○○○	Acknowledgements

Learnable transformations

Two example functions :

og-shift:
$$g(x, a, b, c) = \begin{cases} a \cdot \log((bx)^c + 1) & x \ge 0\\ -a \cdot \log((-bx)^c + 1) & x < 0 \end{cases}$$

sqrt-shift: $h(x, a, b) = \begin{cases} \sqrt{(ax)^b + \frac{1}{4}} - \frac{1}{2} & x \ge 0\\ -\sqrt{(-ax)^b + \frac{1}{4}} + \frac{1}{2} & x < 0 \end{cases}$

FIGURE – Simulating the bimodal shape using transformations proposed yielded pretty good results. With learnable transformations, the convergence is slightly worse than BN, but still much better than usual DNN training.

Backgrounds 000	Learnable Transformations by Shape	Moment-Matching	Copula Transform	Results ○●○○○○	Future	Acknowledgements

Moment-Matching

- The most difficult part of moment-matching formulation of BN is the stability of the convergence. This problem was mentioned in some prior work [Abramov 2010], but no completely reliable method was found.
- We used Hermite polynomial basis for $T_i(x)$ instead of standard basis for stablization.
- The support of the integration is on 3× range of the input data.
- We used Gaussian quadrature to estimate the integration.

FIGURE - Moment-matching on some sample MNIST data inputs

Status : Already achieved stable convergence (yay). Ongoing research to optimize backprop and simplify test-phase behavior.

Backgrounds	Learnable Transformations by Shape	Moment-Matching	Copula Transform	Results ○○●○○○	Acknowledgements
Copula	Transform				

We used linear regression in the testing phase to approximate the copula transformation function. A choice by observation :

FIGURE - Data input vs. output for copula transformation training

Backgrounds 000	Learnable Transformations by Shape	Moment-Matching	Copula Transform	Results ○○○●○○	Acknowledgements
Copula	Transform				

Training and testing on MNIST and CIFAR-10 datasets revealed encouraging results. In terms of convergence in both phases, copula transform is able to outperform batch-normalization :

FIGURE - Convergence comparison on MNIST : CT vs. BN vs. Regular

MNIST dataset (handwritten digit) :

Backgrounds 000	Learnable Transformations by Shape	Moment-Matching	Copula Transform	Results ○○○○●○	Acknowledgements
Copula	Transform				

Training and testing on MNIST and CIFAR-10 datasets revealed encouraging results. In terms of convergence in both phases, copula transform is able to outperform batch-normalization :

CIFAR-10 dataset (image classification) :

Backgrounds 000	Learnable Transformations by Shape	Moment-Matching	Copula Transform	Results ○○○○○●	Future	Acknowledgements
Copula	Transform					

Tables for comparison on MNIST dataset performance :

MNIST-training (loss)								
25K 50K 75K 100K 125K								
BatchNorm	1.738	1.243	1.050	0.632	0.634			
Copula	0.717	0.270	0.246	0.167	0.361			
Regular 2.292 2.135 1.577 0.764 1.0					1.034			

MNIST-testing (accuracy)								
25K 50K 75K 100K 125K								
BatchNorm 62.84%		80.84%	91.59%	95.01%	95.90%			
Copula	92.54%	95.15%	96.03%	96.48%	96.84%			
Regular	24.41%	28.78%	56.44%	77.54%	82.49			

Backgrounds	Learnable Transformations by Shape	Moment-Matching	Copula Transform	Results 000000	Future	Acknowledgements
Future	work					

- Further optimize the copula transform so that it is
 - 1 more efficient to run on convolutional layers (i.e. image inputs that can have muliple channels);
 - 2 parallelizable on CUDA to further speed up training.
- Optimize the backprop in moment-matching, and define a testing behavior for it.
- So far the focus has been on N(0, 1). But from learnable transformations and copula transform we can see that many shapes and distributions are worthy of further explorations.

Backgrounds	Learnable Transformations by Shape	Moment-Matching	Copula Transform	Results 000000	Acknowledgements

Acknowledgements

Many thanks to Zico and Brandon for their guidance on my senior thesis!

FIGURE - Zico Kolter

FIGURE - Brandon Amos