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Very brief intro to DNN

Backgrounds

Recent years have witnessed great success in the usage of deep neural network
(DNN) in various tasks.

VGG, AlexNet, AlphaGo, etc.

So what is a DNN? The idea is straightforward.
1 Layers
2 Links
3 Non-linearities

FIGURE – A simple 2-layer network

In this example :
ypredict = W2

(
ϕ(W1(x(i)) + b1)

)
+ b2
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How fast does a DNN learn?

Backgrounds

A neural network is able to update its parameters to
make itself better, as long as there is a metric for
what’s good/bad— a loss function ` :

W+ ← W− α · ∇W`(x(i),W,b, . . . ) (GD)

Backpropagation

GD, Adam, Adagrad, RMSProp, etc.

Activation functions (nonlinearities)

ReLU (Rectified Linear Unit), Sigmoids, etc.

Input distribution

Batch-normalization

FIGURE – Example of a GD trace

FIGURE – ReLU = max(0, x)
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Batch-normalization

Backgrounds

In late 2015, Szegedy and Ioffe proposed the method of adding a batch-normalization
(BN) layer use before ReLU to accelerate training and testing convergences.

Idea : normalize the input minibatch’s data so that it has zero mean and unit variance :

x̂ (i) = γ(i) x (i) − µ(i)√
σ(i)2

+ ε

+ β(i)

where µ(i) is the mean of this minibatch and σ(i) is the standard deviation.

(a) BN layer (b) Convergence : BN vs. no-BN

.

(c) Internal covariate shift

Shaojie Bai On Pre-ReLU Distribution and Simulating BN 10 May 2017 5 / 22



Backgrounds Learnable Transformations by Shape Moment-Matching Copula Transform Results Future Acknowledgements

Learnable Transformations

Compare the distribution pattern for pre-BN data vs. post-BN (pre-ReLU) data :

FIGURE – Pre-ReLU distribution in a network using BN (setting 1) on MNIST. Left : pre-BN. Right : post-BN.

FIGURE – Pre-ReLU distribution in a network using BN (setting 2) on MNIST. Left : pre-BN. Right : post-BN.
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Learnable Transformations

In general, we observed that surprisingly, BN+ReLU tends to transform the data into a
bimodal shape. In particular, a higher, narrower peak at the near-zero negative side, as
well as a shorter, wider peak at the farther positive side.

Idea : if this is the shape DNN prefers... we can try to simulate it !

Steeper slope at around 0
Gradually flattened slope as we move farther from the origin
At least twice differentiable

Example :

FIGURE – Learnable transformation example : square-root-shift functions ; a and b are learnables
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Moment-Matching

A more careful and statistical formulation of Batch-Normalization.

Think of BN as an attempt to match the empirical data distribution so that its 1st

moment 1 becomes 0 and 2nd moment becomes 1.

Target : N (0, 1) (which has moments 0,1,0,3,0,15,. . .)

What if we match the moments to degrees higher than 2? For instance, k = 6?

Challenge : Matching 2 moments is very easy (affine transformation). Generally no
reliable one-step method for higher-degree moment match.

1. In general, the i th statistical moment is defined as E[X i ] =
∫

x i p(x) dx
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Moment-Matching

Generally, given input data x the goal of this method is two-fold :

1. Find optimal distribution for certain moments

Find distributions p1(x) and p2(x) that satisfy the empirical and target moments,
respectively :

E∗[x i ] =

∫
x i p∗(x) dx =

 µ̂i =
1
n

n∑
j=1

xi
j empirical

µi target

for i = 1, . . . , k

2. Transform the data

Match the quantiles of the two distributions, and transform the input x by :

x̂j = F−1
2 ( F1(xj )︸ ︷︷ ︸

the quantile of xj in F1

) ⇐⇒ F2(x̂j ) = F1(xj )

where F1 and F2 are the cumulative distribution functions (cdf) of p1 and p2.
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Moment-Matching

Using maximum Shannon entropy H(p) as the metric for the optimal p1 and p2, we can
re-formulate the problem by considering its dual problem, which must be convex :

max
p

H(p) = −
∫

p(x) log p(x)dx s.t. E∗[x i ] = µi , i ∈ [k ]

⇐⇒min
γ
L(γ) =

∫
S

exp
( k∑

i=0

γi Ti (x)− 1
)

︸ ︷︷ ︸
Optimal p∗ from KKT

dx −
k∑

i=0

γi Ti (x) (λ are dual variables)

This allows us to use Newton’s method with backtracking line search :

γ+ = γ − t(∇2
γL)−1∇γL (t from line search)

As for the second phase, F2(x̂j ) = F1(xj ) can also be solved using Newton’s method.

However, the detailed steps is much more complicated :

Inefficient integration

Sensitivity of γi corresponding on higher degrees compromises stability of
convergence

Hard to backpropagate

Shaojie Bai On Pre-ReLU Distribution and Simulating BN 10 May 2017 10 / 22



Backgrounds Learnable Transformations by Shape Moment-Matching Copula Transform Results Future Acknowledgements

Copula Transform

We can impose an even stronger requirement on the target of the transformation.

Learnable transformations : observation-based

Moment-matching : match to some target moments up to a finite degree k

Copula transform : a “perfect” transform to match a specific distribution

Definition (informally) : For a random vector (X1, . . . ,Xd ) where each Xi has a
continuous probability distribution function, the random vector of its cdfs :

(U1, . . . ,Ud ) = (F1(X1), . . . ,Fd (Xd ))

has uniformly distributed marginals. The joint cdf of (U1, . . . ,Ud ) is the copula of
(X1, . . . ,Xd ).

A bit too abstract?
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Copula Transform

Basic ideas/steps for copula transform :

Copula transform

SortIndex(x) : For each xi in the input, find its index in the sorted version of x.
Name this index ti .

In short, for a target distribution with cdf Φ :

x̂ = Φ−1
[

SortIndex(x) + 0.5
n = len(x)

]
(Add 0.5 to balance indexing bias)

FIGURE – An example of a copula transform on a length-5 input data x
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Copula Transform

However, sorting is not differentiable. This makes backpropagation impossible. Instead,
we can approximate the sort.

Q : What does it mean when we say xi is at index 2 in the sorted version of x ?

Note that

x1T − 1xT =


x1 x1 . . . x1
x2 x2 . . . x2
...

...
. . .

...
xn xn . . . xn

−


x1 x2 . . . xn
x1 x2 . . . xn
...

...
. . .

...
x1 x2 . . . xn

 = [xi − xj ]i,j

Therefore, the # of positive values in row i is exactly the index of xi :

SortIndex(x) = 1{y>0}(x1T − 1xT ) · 1n×1

≈
[
σ(γ(x1T − 1xT ))−

1
2

I
]
· 1n×1

where σ(x) = 1
1+exp(−x)

is the sigmoid function and γ is a strength factor for the
approximation.
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Copula Transform

The approximation is good in most of the
cases, assuming we have a reasonable
value for γ— which is learnable through
backpropagation.

FIGURE – Sigmoid approximation of the indicator func-
tion with different strengths

Copula transform formula with the learnables θ, β, γ

ŷ = θx̂ + β = θΦ−1
[
σ(γ(x1T − 1xT )) · 1n×1

n = len(x)

]
+ β
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Learnable transformations

Two example functions :

log-shift : g(x , a, b, c) =

{
a · log((bx)c + 1) x ≥ 0
−a · log((−bx)c + 1) x < 0

sqrt-shift : h(x , a, b) =


√

(ax)b + 1
4 −

1
2 x ≥ 0

−
√

(−ax)b + 1
4 + 1

2 x < 0

FIGURE – Simulating the bimodal shape using transformations proposed yielded pretty good results. With learnable
transformations, the convergence is slightly worse than BN, but still much better than usual DNN training.
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Moment-Matching

The most difficult part of moment-matching formulation of BN is the stability of the
convergence. This problem was mentioned in some prior work [Abramov 2010],
but no completely reliable method was found.
We used Hermite polynomial basis for Ti (x) instead of standard basis for
stablization.
The support of the integration is on 3× range of the input data.
We used Gaussian quadrature to estimate the integration.

FIGURE – Moment-matching on some sample MNIST data inputs

Status : Already achieved stable convergence (yay). Ongoing research to optimize
backprop and simplify test-phase behavior.
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Copula Transform

We used linear regression in the testing phase to approximate the copula
transformation function. A choice by observation :

(a) After 3 epochs of training (b) After 6 epochs of training

FIGURE – Data input vs. output for copula transformation training
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Copula Transform

Training and testing on MNIST and CIFAR-10 datasets revealed encouraging results. In
terms of convergence in both phases, copula transform is able to outperform
batch-normalization :

MNIST dataset (handwritten digit) :

(a) Testing accuracy convergence (b) Training loss convergence

FIGURE – Convergence comparison on MNIST : CT vs. BN vs. Regular
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Copula Transform

Training and testing on MNIST and CIFAR-10 datasets revealed encouraging results. In
terms of convergence in both phases, copula transform is able to outperform
batch-normalization :

CIFAR-10 dataset (image classification) :

(a) Testing accuracy convergence (b) Training loss convergence

FIGURE – Convergence comparison on CIFAR-10 : CT vs. BN vs. Regular
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Copula Transform

Tables for comparison on MNIST dataset performance :

MNIST-training (loss)
25K 50K 75K 100K 125K

BatchNorm 1.738 1.243 1.050 0.632 0.634
Copula 0.717 0.270 0.246 0.167 0.361
Regular 2.292 2.135 1.577 0.764 1.034

MNIST-testing (accuracy)
25K 50K 75K 100K 125K

BatchNorm 62.84% 80.84% 91.59% 95.01% 95.90%
Copula 92.54% 95.15% 96.03% 96.48% 96.84%
Regular 24.41% 28.78% 56.44% 77.54% 82.49
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Future work

Further optimize the copula transform so that it is
1 more efficient to run on convolutional layers (i.e. image inputs that can have muliple

channels) ;
2 parallelizable on CUDA to further speed up training.

Optimize the backprop in moment-matching, and define a testing behavior for it.

So far the focus has been on N (0, 1). But from learnable transformations and
copula transform we can see that many shapes and distributions are worthy of
further explorations.
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